校园生活
当前位置: 首页 >> 校园生活 >> 学术活动 >> 学院讲座 >> 正文
统计数据 / lectrue notice
  • 排序 学院 发文量
    1 岳麓书院 147
    2 物理与微电子科学学院 143
    3 机械与运载工程学院 139
    4 化学化工学院 138
    5 数学与计量经济学院 70
    6 土木工程学院 63
    7 材料科学与工程学院 61
    8 信息科学与工程学院 47
    9 建筑学院 40
    10 经济与贸易学院 38
  • 排序 学院 发文量
    11 电气与信息工程学院 35
    12 教务处 34
    13 生物学院 30
    14 工商管理学院 28
    15 外国语学院 15
    16 法学院 15
    17 新闻传播与影视艺术学院 8
    18 研究生院 7
    19 经济与管理研究中心 6
    20 马克思主义学院 5
    21 中国语言文学学院 4
数学院:Highly accurate doubling algorithms for M-matrix algebraic Riccati equations
学术地点 数学院2楼203报告厅 主讲人 薛军工 教授, 复旦大学
讲座时间 2019年6月25日(星期二)下午16:00-17:00

学术报告:Highly accurate doubling algorithms for M-matrix algebraic Riccati equations

报告人:薛军工 教授, 复旦大学

报告时间:2019年6月25日(星期二)下午16:00-17:00

报告地点:数学院2楼203报告厅

内容摘要: The doubling algorithms are very efficient iterative methods for computing the unique minimal nonnegative solution to an $M$-matrix algebraic Riccati equation (MARE).

They are globally and quadratically convergent, except for MARE in the critical case at which it converges linearly with the linear rate $1/2$. However, the initialization phase and the doubling iteration kernel of any doubling algorithm involve inverting nonsingular $M$-matrices. In particular for MARE in the critical case, the $M$-matrices in the doubling iteration kernel,

although nonsingular, move towards singular $M$-matrices at convergence. A nonsingular $M$-matrix can be inverted by the GTH-like algorithm to almost full entrywise relative accuracy, provided a triplet representation of the matrix is known. Recently, Nguyen and Poloni ({\em Numer. Math.}, 130(4):763--792, 2015) discovered a way to construct triplet representations in a cancellation-free manner for all involved $M$-matrices in the doubling iteration kernel, for

a special class of MAREs arising from Markov-modulated fluid queues.

In this paper, we extend Nguyen's and Poloni's work to all MAREs by also devising a way to construct the triplet representations cancellation-free.Our construction, however, is not a straightforward extension of theirs. It is made possible byan introduction of novel recursively computable auxiliary nonnegative vectors. As the second contribution, we propose an entrywise relative residual for an approximate solution. The residual has an appealing feature of being able to reveal the entrywise relative accuracies of all entries, large and small, of the approximation. This is in marked contrast to the usual legacy normalized residual which reflects relative accuracies of large entries well but not so much those of very tiny entries. Numerical examples are presented to demonstrate and confirm our claims.

上一条:物电院:Pseudoconformal structure of dense nuclear matter
下一条:化工院:Synthesis of Polypeptides via Bioinspired Polymerization of in situ Purified N-carboxyanhydrides

湖大官网
湖大微信
湖大微博