校园生活
当前位置: 首页 >> 校园生活 >> 学术活动 >> 学院讲座 >> 正文
统计数据 / lectrue notice
  • 排序 学院 发文量
    1 机械与运载工程学院 256
    2 物理与微电子科学学院 254
    3 化学化工学院 239
    4 岳麓书院 212
    5 材料科学与工程学院 119
    6 土木工程学院 99
    7 数学与计量经济学院 89
    8 教务处 77
    9 生物学院 75
    10 电气与信息工程学院 70
  • 排序 学院 发文量
    11 信息科学与工程学院 68
    12 建筑学院 42
    13 经济与贸易学院 38
    14 工商管理学院 28
    15 法学院 15
    16 外国语学院 15
    17 研究生院 10
    18 新闻传播与影视艺术学院 9
    19 经济与管理研究中心 6
    20 电气院 5
    21 马克思主义学院 5
电气院:3D Receiver Operating Characteristic Curve (ROC) Analysis for Performance Evaluation of Target Detection
学术地点 机器人视觉感知与控制技术国家工程实验室 305报告厅 主讲人 Chein-I Chang
讲座时间 2021年7月19日9:00-11:00

主讲人:Chein-I Chang, Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, USA

时间:2021年7月19日9:00-11:00(北京时间)

线下参与方式:机器人视觉感知与控制技术国家工程实验室 305报告厅集中听课

线上参与方式:

加入 Zoom 会议链接: https://us05web.zoom.us/j/87357345709?pwd=VUc1SUNmL3dqcndnSUlCeFVOZWtVUT09 

会议号:873 5734 5709 密码:123

主讲人简介: 

    Chein-I Chang 教授于1987年毕业于美国马里兰大学帕克分校,电机工程专业博士。现任美国马里兰大学巴尔地摩郡分校电机工程系终身教授,同时也是IEEE Life Fellow与SPIE Fellow、大连海事大学讲座教授、台湾中兴大学遥测科技杰出讲座教授,并担任IEEE Transaction on Geoscience and Remote Sensing、Remote Sensing等多个国际知名期刊编委,已发表SCI检索学术论文200余篇,其中超过100篇属于高光谱领域,撰写高光谱领域专著4部,并编著高光谱领域书籍3部,授权美国专利7项,Google被引次数达25000多次,Google学术H指数为66。

讲座简介: 

    Hyperspectral target detection can be performed in two different modes, active detection such as known target detection and passive detection such as anomaly detection. To evaluate detection performance, a general criterion is to use the area under a receiver operating characteristic (ROC) curve, AUC which is plotted based on detection probability, PD versus false alarm probability, PF. Unfortunately, Unfortunately, many ROC curves reported in the literature are indeed incorrectly generated. Another major issue is that using AUC of a ROC curve of (PD,PF), denoted by AUC(D,F) is unreliable and misleading because PD and PF are generated by the same threshold. As a result, a higher PD also generates a higher PF and vice versa. To address these two issues this talk presents a 3D ROC analysis which generates a 3D ROC curve as a function of (PD,PF,) by including the threshold parameter as a third independent variable. Consequently, a 3D ROC curve along with its derived three 2D ROC curves of (PD,PF), (PD,) and (PF,) can be further used to design new quantitative measures to evaluate the effectiveness of a detector and its target detectability TD and background suppressibility (BS). To demonstrate the full utility of 3D ROC analysis in target detection, examples are included in this talk to demonstrate how 3D ROC curves can be used to design new detection measures to evaluate target/anomaly detection performance more effectively ad accurately in terms, TD, BS and detector’s effectiveness.

下一条:电气院:预测控制的鲁棒性分析和综合

湖大抖音
湖大微信
湖大微博